
(a) SQuAD 7th layer (b) SQuAD 11th layer

Figure 2: The loss landscape for different layers in SQuAD
is illustrated by perturbing the parameters along the first
two dominant eigenvectors of the Hessian. The silver sphere
shows the point in the parameter space to which the BERT
model has converged.

tude of eigenvalues even though all layers have exactly same
structure and size.

The above Hessian based approach was used in (Dong et
al. 2019), where top eigenvalues are computed and averaged
for different training data. More aggressive quantization is
performed for layers that have smaller top eigenvalue, which
corresponds to flatter loss landscape as in Appendix. How-
ever, we find that assigning bits based only on the average
top eigenvalues is infeasible for many NLP tasks. As shown
in Fig. 1, top eigenvalues of Hessian for some layers exhibits
very high variance with respect to different portion of the
input dataset. As an example, the variance of the 7th layer for
SQuAD stays larger than 61.6 while the mean of that layer is
around 1.0, even though each data point corresponds to 10%
of the entire dataset (which is 9K samples). To address this,
we use the following metric instead of just using mean value,

Ωi � |mean(λi)|+ std(λi), (2)

where λi is the distribution of the top eigenvalues of Hi,
calculated with 10% of training dataset.2

After Ωi is computed, we sort them in descending order,
and we use it as a metric to relatively determine the quanti-
zation precision. We then perform quantization-aware fine-
tuning based on the selected precision setting.

An important technical point that we need to emphasize
is that our method expects that before performing quanti-
zation the trained model has converged to a local minima.
That is, the practitioners who trained BERT and performed
its fine-tuning for downstream tasks should have chosen the
hyper-parameters and number of iterations such that a local
minima has been reached. The necessary optimality condi-
tions are zero gradient, and positive curvature (i.e., positive
Hessian eigenvalue). In our analysis, we observed that for the
three tasks of MNLI, CoNLL-03, and SST-2 the top Hessian
eigenvalue is indeed positive for (see Appendix). However,

2Without confusion, we use � i for both single top eigenvalue
and its distribution with respect to 10% of the data.

(a) Layer-wise (b) Group-wise (Nh

group)
(c) Group-wise (2Nh

group)

Figure 3: The overview of Group-wise Quantization Method.
We illustrate this with value matrices of a multi-head self
attention layer. Here Nh(number of heads) value matrices Wv

are concatenated together, which results in a 3-d tensor. The
same color denotes the same group with a shared quantization
range.

we find that the BERT model fine-tuned for SQuAD has
actually not converged to a local minima, as evident in the
Hessian eigenvalues shown in Fig. 1(d), where we observe
very large negative eigenvalues. Directly visualizing the loss
landscape also shows this very clearly as in Fig. 2. Because
of this, our expectation is that performing quantization on
SQuAD would lead to higher performance degradation as
compared to other tasks, and this is indeed the case as will
be discussed next.

2.3 Group-wise Quantization

Assume that the input sequence has n words and each word
has a d-dim embedding vector (d = 768 for BERTBASE),
i.e., x = (x(1), . . . , x(n))T ∈ R

n× d. In Transformer en-
coder, each self-attention head has 4 dense matrix, i.e.,
Wk,Wq,Wv,Wo ∈ R

d
Nh

× d, where Nh is the number of
attention heads. Here Wk, Wq, Wv and Wo stand for key,
query, value and output weight matrix. Each self-attention
head computes the weighted sum as

Att(x, x(j)) = Wo

n∑
i=1

softmax

(
x(j)TWT

q Wkx(i)
√
d

)
Wvx(i).

Through this reparametrization, the multi-head self-attention
(MHSA) will add these features into the final output, that is
we will have

� Nh

i=1 Atti(x, x(j)). Directly quantizing each
4 matrices in MHSA as an entirety with the same quantiza-
tion range can significantly degrade the accuracy, since there
are more than 2M parameters in total, which corresponds
to 4 × 12 × 64 = 3072 neurons, and the weights corre-
sponding to each neuron may lie in different range of real
numbers. Channel-wise quantization can be used to alleviate
this problem in convolutional neural networks, where each
convolutional kernel can be treated as a single output channel
and have its own quantization range. However, this cannot be
directly applied for dense matrices, since each dense matrix
itself is a single kernel. Therefore, we propose group-wise
quantization for attention-based models. We treat the individ-
ual matrix W with respect to each head in one dense matrix

8817



Table 2: Quantization results for BERTBASE on SQuAD.

Method w-bits e-bits EM F1 Size Size-w/o-e

Baseline 32 32 81.54 88.69 415.4 324.5

Q-BERT 8 8 81.07 88.47 103.9 81.2

DirectQ 4 8 66.05 77.10 63.4 40.6
Q-BERT 4 8 80.95 88.36 63.4 40.6

DirectQ 3 8 46.77 59.83 53.2 30.5
Q-BERT 3 8 79.96 87.66 53.2 30.5
Q-BERTMP 2/4 MP 8 79.85 87.49 53.2 30.5

DirectQ 2 8 4.77 10.32 43.1 20.4
Q-BERT 2 8 69.68 79.60 43.1 20.4
Q-BERTMP 2/3 MP 8 79.25 86.95 48.1 25.4

has the largest mean(λi). Beyond the relatively smaller mean,
the last three layers also have much smaller variance, which
indicates the insensitivity of these layers. Therefore, higher
bits will only be assigned for middle layers according to Eq. 2
for Q-BERT 2/3 MP.3 In this way, with only additional 5MB
memory storage, 2/3-bits Q-BERTMP is able to retain the
performance drop within 2.3% for MNLI, SQuAD and 1.1%
for SST-2, CoNLL-03, with up to 13× compression ratio in
weights. Note that this is up to 6.8% better than Q-BERT with
uniform 2 bits.

One consideration for quantization is that 3-bit quantized
execution is typically not supported in hardware. It is how-
ever possible to load 3-bit quantized values and cast them to
higher bit precision such as 4 or 8 bits in the execution units.
This would still have the benefit of reduced memory volume
to/from DRAM. It is also possible to avoid using 3 bits and
instead use a mixture of 2 and 4 bits as shown in Tab. 1. For
example, SST-2 Q-BERTMP with mixed 2/4-bit precision
weights has the same model size as the 3 bit quantization in
53.2MB and achieves similar accuracy. We observe similar
trend for other tasks as well.

One important observation is that we found SQuAD to
be harder to quantize as compared to other tasks; see Tab. 2.
For example, 2-bits DirectQ results in more than 10% F1

score degradation. Even Q-BERT has larger performance
drop as compared to other tasks in Tab. 1. We studied this phe-
nomenon further through Hessian analysis. In Fig. 1, among
all the tasks, it can be clearly seen that SQuAD not only has
much larger eigenvalue variance, but it has very large nega-
tive eigenvalues. In fact this shows that the existing BERT
model for SQuAD has not reached a local minima. This is
further illustrated in the 3-d loss landscape of all four tasks in
Appendix. It can be clearly seen that for other three tasks, the
stopping point is at a quadratic bowl (at least in the first two
dominant eigenvalue directions of the Hessian). However,
compared to the others, SQuAD has a totally different struc-
ture to its loss landscape. As shown in Fig. 2, the stopping
points of different layers on SQuAD have negative curvature
directions, which means they have not converged to a local
minima yet. This could well explain why the quantization of
SQuAD results in more accuracy drop. Our initial attempts to

3Exact detailed bits setting is included in the Appendix

address this by changing training hyper-parameters were not
successful. We found that the BERT model quickly overfits
the training data. However, we emphasize that fixing BERT
model training itself is outside the scope of this paper and
not possible with academic computational resources.

3.2 Effects of group-wise quantization

We measure the performance gains with different group num-
bers in Tab. 3. We can observe from the table that performing
layer-wise quantization (shown in Fig. 3a) is sub-optimal
for all four tasks (the performance drop is around 7% to
11.5%). However, the performance significantly increases
as we increase the number of groups. For example, for 12
groups, the performance degradation is less than 2% for all
the tasks. Further increasing the group number from 12 to
128 increases the accuracy further by at least 0.3% accuracy.
However, increasing the group number further from 128 to
768 can only increase the performance within 0.1%. This
shows that the performance gain almost saturates around 128
groups. It is also preferable not to have very large value for
the number of group since it increases the number of Look-
up Tables (LUTs) necessary for each matrix multiplication
which can adversely affect hardware performance, and based
on our results there are diminishing returns in terms of ac-
curacy. In all our experiments, we used 128 groups for both
Q-BERT and Q-BERTMP in Sec. 3.1.

Table 3: Effects of group-wise quantization for Q-BERT on
three tasks. The quantization bits were set to be 4 for weights,
8 for embeddings and 8 for activations for all the tasks.

# Group SST-2 MNLI-m/mm CoNLL-03

Baseline 93.00 84.00/84.40 95.00

1 85.67 76.69/77.00 89.86
12 92.31 82.37/82.95 94.42
128 92.66 83.89/84.17 94.90
768 4 92.78 84.00/84.20 94.99

4 Discussion

In this Section, we further investigate the quantization effects
on different modules, e.g. different embedding layers (e.g.,
word and position embeddings), and we perform qualitative
analysis using attention distribution. This illustrates that Q-
BERT better captures the behaviour of the original model as
compared to DirectQ in all cases.

4.1 Quantization effects on different modules

Here we investigate the quantization effects with respect to
different modules of BERT model (multi-head self-attention
versus feed-forward network, and different embedding layers,
i.e., word embedding versus position embedding).

Generally speaking, we find that embedding layer is more
sensitive than weights for quantization. This is illustrated
in Tab. 4a, where we use 4-bits layerwise quantization for

4Here we treat each output neuron as a single group.
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embedding, which results in an unacceptable performance
drop up to 10% for SST-2, MNLI, CoNLL-03 and even more
than 20% for SQuAD. This is despite the fact that we used
8/8-bits for weights/activations. On the contrary, encoder
layers consume around 79% total parameters (4× embedding
parameter size), while quantizing them to 4-bits in Tab. 1
and 2 leads to less performance loss.

Furthermore, we find that position embedding is very sensi-
tive to quantization. For instance, quantizing position embed-
ding to 4 bits results in generally 2% additional performance
degradation than quantizing word embedding, even though
the position embedding only accounts for less than 5% of
the entire embedding. This indicates the importance of posi-
tional information in Natural Language Understanding tasks.
Given position embedding only accounts for a small portion
of model size, we can do mixed-precision quantization for
embedding to further push down the model size boundary
with a tolerable accuracy drop, as shown in Appendix.

Table 4: Quantization effect to different modules. We ab-
breviate the quantization bits used for word embedding as
“ew-bits”, position embedding as “ep-bits”, multi-head atten-
tion layer as “s-bits” and fully-connected layer as “f-bits”.
In (a), we set weight and activation bits as 8. In (b), we set
embedding and activation bits as 8.

(a) quantization effect on embedding

Method ew-bits ep-bits SST-2 MNLI-m CoNLL-03 SQuAD

Baseline 32 32 93.00 84.00 95.00 88.69

Q-BERT 8 8 92.88 83.83 94.79 88.47
Q-BERT 4 8 91.74 82.91 94.44 87.55
Q-BERT 8 4 89.11 82.84 93.86 72.38
Q-BERT 4 4 85.55 78.08 84.32 61.70

(b) quantization of multi-head attention versus fully-connected
layer

Method s-bits f-bits SST-2 MNLI-m CoNLL-03 SQuAD

Baseline 32 32 93.00 84.00 95.00 88.69

Q-BERTMP 1/2MP 2/3MP 89.56 73.66 91.74 75.81
Q-BERTMP 2/3MP 1/2MP 85.89 70.89 87.55 68.71
Q-BERTMP 2/3MP 2/3MP 92.08 81.75 93.91 86.95

To study the quantization effects on self-attention layers
and fully-connected networks, we conducted extensive ex-
periments under different bits settings for the encoder layers.
The results are shown in Tab. 4b. Specifically, we adopt the Q-
BERTMP setting in Tab. 1, with a mixture of 2 and 3 bits for
encoder weights. To test the robustness of the two modules
inside each encoder layer, we further reduce one more bit in
the corresponding modules and denote the resulting precision
setting 1/2MP. From Tab. 4b, we can conclude that generally
self-attention layer is more robust to quantization than the
fully-connected network, since 1/2MP self-attention results
in about 5% performance drop while 1/2MP fully-connected
will worsen this to 11%.

(a) SST-2 (b) MNLI

(c) CoNLL-03 (d) SQuAD

Figure 4: KL divergence over attention distribution between
Q-BERT/DirectQ and Baseline. The distance between Q-
BERT and Baseline is much smaller than that of DirectQ and
Baseline.

4.2 Qualitative Analysis

We use attention information to conduct qualitative analysis
to analyze the difference between Q-BERT and DirectQ.

To do so, we compute the Kullback–Leibler (KL) diver-
gence between the attention distribution for the same input
from the coordinated head of both quantized BERT and full-
precision BERT. It should be noted that we compute the
average distance out of 10% of the entire training dataset.
The smaller KL divergence here means that the output of
the multi-head attention of the two models is closer to each
other. We illustrate this distance score for each individual
head in Fig. 4 for SST-2, MNLI, CoNLL-03 and SQuAD. We
compared Q-BERT and DirectQ with 4-bits weights, 8-bits
embedding and 8-bits activation. Each scatter point in Fig. 4
denotes the distance w.r.t one head, and the line chart shows
the average results over the 12 heads in one layer. We can
clearly see that Q-BERT always incurs a smaller distance to
the original baseline model as compared to DirectQ model,
for all the different layers.

5 Conclusion

In this work, we perform an extensive analysis of fine-tuned
BERT and propose Q-BERT, an effective scheme for quantiz-
ing BERT. In order to aggressively reduce the model size by
mixed-precision quantization, we proposed a new layer-wise
Hessian based method which captures both the average and
the variance of the eigenvalues. Moreover, a new group-wise
quantization is proposed to perform fine-grained quantization
inside each encoder layer. In four downstream tasks, equipped
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with the aforementioned methods, Q-BERT achieves13×
compression ratio in weights,4× smaller activation size, and
4× smaller embedding size, with at most 2.3% accuracy loss.
To better understand how different factors will affect the
trade-off between performance and the model compression
ratio in Q-BERT, we conduct controlled experiments to in-
vestigate the effect of different quantization schemes and
quantizing different modules in BERT, respectively.
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